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Abstract-The conventional stress inversion methods estimate only four of the six independent parameters of the 
tectonic stress tensor. Using the Coulomb-Navier failure criterion as an additional constraint, it is possible to 
estimate the fifth parameter, characterized by the normalized critical stress difference, i.e. the critical stress 
difference divided by the effective overburden pressure. This parameter is related to the average friction 
coefficient of faults. If the stress field is uniform, faults with different orientations and at different depths have the 
same normalized critical stress difference. On this basis, a new method is proposed to estimate the average 
friction coefficient and the normalized critical stress difference from inversion of a population of faults of 
measured orientations and slip directions. This method is applicable both to newly formed faults and to 
reactivated faults. This method is applied to four data sets. In three cases, an average friction coefficient 
jia = 0.64,0.70 and 0.88 is obtained. One case shows a relatively low average friction coefficient j& = 0.22, but 
this value is of poor quality due to the effect of a possibly nonuniform stress field. These results are in agreement 
with the average value of friction coefficient j& = 0.75 derived from laboratory experiments. 

INTRODUCTION 

The orientations of fault planes and associated slip 
directions are a reflection of the state of stress in the 
crust. Under the assumptions that the slip direction 
coincides with the direction of maximum shear stress on 
the fault plane (Bott 1959) and that the tectonic stress 
field in a region is uniform, Carey & Brunier (1974) 
proposed a method to estimate the tectonic stress field 
by inversion of a population of faults. This method, 
variously modified and improved (Angelier 1979, Etche- 
copar 1981, Angelier et al. 1982, Angelier 1984, Gephart 
& Forsyth 1984, Michael 1984, Gephart 1985, Angelier 
1990, Yin & Ranalli 1993), has now become a standard 
technique to determine the paleostress field (using fault 
measurements) and the contemporary stress field (using 
earthquake focal mechanisms) (Vasseur et al. 1983, 
Gephart & Forsyth 1984, 1985, Michael 1984, Carey- 
Gailhardis & Mercier 1987, Lana & Correig 1987, 
Michael 1987, Huang & Angelier 1989, Zoback 1989, 
Bergerat et al. 1990, Caldentey & Lana 1990, Vetter 
1990, Fleischmann & Nemcok 1991, Will &Powell 1991, 
Wyss et al. 1992). 

Using the above inversion method based on the geo- 
metrical constraint (i.e. the constraint imposed by fault 
plane orientations and slip directions), four of the six 
independent parameters of the tectonic stress tensor can 
be obtained, that is, the three principal stress directions 
and the stress ratio 6 = (oz - +)I(D~ - 0~3) (where ol, 
a,, a3 are the principal stresses). The other two para- 
meters (the magnitudes of two of the three principal 
stresses) which are related to the frictional strength and 
the pore fluid pressure cannot be determined on the 
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basis of the geometrical constraint alone. However, the 
CoulombNavier failure criterion can be used as an 
additional constraint (i.e. the mechanical constraint) to 
determine the frictional strength of faults, and conse- 
quently to obtain the fifth parameter of the tectonic 
stress tensor (Reches 1987, CClCrier 1988, Gephart 
1988, Angelier 1989, Gephart 1992, Reches et al. 1992). 

A method based on the mechanical constraint was 
proposed by Reches et al. (1992), and applied to more 
than 20 areas of different tectonic settings. An average 
friction coefficient was obtained for each area, ranging 
from 0.0 to 1.3 (Reches et al. 1992). The range and 
dispersion of the estimated friction coefficients are much 
larger than those derived from rock friction experiments 
(Byerlee 1978). Moreover, a zero friction coefficient 
implies that faulting can occur along a pre-existing fault 
plane subject to zero or very small tectonic shear stress. 
Neither earthquake observations nor in situ stress 
measurements agree with this inference (Raleigh et al. 
1972, Hanks 1977, Zobak & Healy 1984). Apparently, 
the results may be related to some underlying assump- 
tion or approximation in the method, rather than to the 
real strength of faults. 

In this paper, we first examine the basis and impli- 
cations of the previous method proposed by Reches et al. 
(1992) and discuss its applicability to stress inversion. 
Then, we propose a new method that incorporates both 
the geometrical constraint and the mechanical con- 
straint to estimate the frictional strength of geological 
faults from inversion of fault-slip data. 

PREVIOUS INVERSION METHOD 
(RECHES et al. 1992) 

Throughout the discussion, we shall refer to two 
Cartesian systems, xi (i = 1, 2, 3) coincident with the 
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Fig. 1. Cartesian coordinate system Xi denotes the geographical co- 
ordinate system with x1, x2 and x3 coinciding with the vertical, the east 
and the north, and yi denotes the principal stress coordinate system 
with yt , y2 and ys coinciding with the u1 , uz and q-axis. The unit vector 
z denoting the direction of the intersection between the yry3 plane 
and +-x3 plane plots at point z. The Euler angles are defined as: a the 
angle between y, and x1; B the angle between y2 and z, measured 
anticlockwise on the y,y, plane starting from ys; y the angle between 
x2 and z, measured clockwise from ~2 on the ~-x3 plane. Upper 

hemisphere Schmidt projection. 

geographic coordinate system, and yi coincident with the 
principal stress coordinate system, respectively. The 
transformation between Xi and yi can be achieved by 
three successive rotations of the Euler angles o[, p, y (see 
Fig. 1); the transformation matrix is (Yin & Ranalli 
1993) 

( 
cos a sin a sin y sin a cos y 

= sinasinj3 cospcosy-cosasinfisiny -cos/lsiny-cosasinbcosy 

-sinacosB sinBcosy+cosacospsiny ) -sin~siny+cosacos~cosy 

(1) 

where Ui, Vi, Wi are the cosines of the angles between y1 
and Xi, ~2 and xi, and y3 and xi, respectively. 

In Reches’ et al. (1992) model, a local stress tensor is 
associated with each fault (the unit vectors P*, B* and T* 
to denote the maximum, the intermediate, and the 
minimum principal stress direction of this stress tensor). 
It is defined as follows: the P*-T* plane coincides with 
the plane containing the slip p and the normal n to the 
fault plane, and P* makes an angle ~J.J* with p and 
ly* + 90” with n, where $J* = (l/2) tan-i(l/p,,), p. being 
the friction coefficient. Consequently, the maximum 
local shear stress coincides with the slip direction on the 
fault plane, andthe critical stress difference is minimized 
for each fault according to the Coulomb-Navier failure 
criterion. Reches’ et al. (1992) method consists of 
searching for a general uniform stress field and an 
average friction coefficient for an ensemble of faults, by 
minimizing the sum of the angles between the principal 

axes of the general stress tensor and the corresponding 
principal axes of the local stress tensor for each fault. 
The criterion for this method can be written as (Reches 
et al. 1992) 

MC1 = n (Pi*r\ y, + B,*Ay2 + T,*Ay3), 
c (2) 
i=l 

where i and A denote the ith fault and the angle between 
the two axes, respectively. Reches et al. (1992) also 
proposed another modified criterion 

MC2 = n [(l - G)P,*Ayi + 6T,*Ay,], 
c (3) 
i=l 

where 6 is the stress ratio. In equations (2) and (3), we 
omit the constant denominators 3n and 2n (n is the total 
number of faults) which appeared in Reches’ et al. 
(1992) original formulae. 

Now we examine these two criteria. Since the inter- 
mediate principal stress direction is B* = n x p, the unit 
vector B* in the xrcordinate system can be expressed as 

[$j=(;~,~~~~). (4) 

where nti and pti are the direction cosines of n and p, 
respectively. The unit vector P*, indicating the maxi- 
mum principal direction of the local stress tensor, is 
related to p, n and B* as 

PTXPIX + zxP2x + P&P3x = cos v 

Pr,nt, + P&n& + P&n,, = -sin I+!J* (5) 

P&B?, + P&B& + P&B&. = 0. 

Substituting equation (4) in (5), the components of P* in 
the xi-coordinate system can be written as 

Pl*, = plx cos T&* - nl, sin I/J* 

P& = pzr cos T/J* - nL sin q* (6) 

P& = p3X cos I/J* - n3X sin I$*. 

Similarly, the components of T* in the xi-coordinate 
system can be derived by vector multiplication of B* and 
P* 

Tr, = -plx sin q* - lzlX cos v* 

T&= -p2rsinv* --nnzrcos~* (7) 

T&= -p3xsin+* - n3xcosq*. 

Using the transformation matrix (equation l), the angles 
P* A y,, B* A y,, and T* A y3 which constitute the cri- 
teria MC1 and MC2 (see equations 2 and 3) are 

P* Ay, = cos-1 1 cos ?)*(z$J& + l+pz + u3p3J 

- sin V*(WI~ + u2n2r + u3n3JI 

B* Ay,= cos-1 1 v,(r~z,p~~ - n3p,) 

+ ~z(nmx - n1xp3x) + v3hxp2, - wd (8) 

T* Ay, = cos-1 1 -sin ly*(wiplX + w2pzr + w3p3.J 

- cos ~*(wiIziX + w2122, + w3123J. 
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The absolute value sign denotes the fact that each angle 
in criteria MC1 and MC2 refers to the acute angle 
between two stress axes. 

From equation (8), one can see that criterion MC1 
does not constrain the stress ratio 6, because the angles 
P* A y,, B* i/y2 and T* A y3 are independent of 6. 
Similarly, it can be proven that criterion MCi does not 
constrain 6 either, although 6 appears explicitly in the 
equation (3). Criterion MC2 can be rewritten as (noting 
that 6 is independent of P* A yl and T* A y3) 

n 

MC2 = 
c 

PTAy,+d n (T;Ay,-PTAy,). (9) 
c 

r=l i=l 

Equation (9) shows that MC2 is a linear function of the 
stress ratio 6, with a slope equal to 
Z(T,? Ay3 - Pi* Ayl). Therefore, MC, can be mini- 
mized only when 6 = 0 or 1 [depending on the quantity 
Z(TT Ay, - P; Ayl)]. 

The above analysis shows that criteria MC1 and MC2, 
as proposed by Reches et al. (1992), can be used to 
determine the three principal stress directions, but not 
the stress ratio 6. However, the principal stress direc- 
tions estimated by MCI and MC, are less accurate than 
the methods based on the geometrical constraint (e.g. 
Angelier 1984, Gephart 1990, Yin & Ranalli 1993), 
because the slip direction on each fault is determined not 
only by the principal stress directions, but also by the 
stress ratio 6. This is reflected in Reches’ et al. (1992) 
inversion result that the average misfit angle between 
shear stress and slip direction is large for the most data 
sets. 

One of the main purposes of Reches’ method is to 
determine the coefficient of friction of faults. Now we 
examine how much the friction coefficient is constrained 
by criteria MC, and MC,. For simplicity, we consider a 
special case, i.e. B* A y, = 0 for each fault. Let ly denote 
the angle between the maximum principal stress direc- 
tion (yi) and the fault plane. The angles y1 A p, y, An, 
y3A p, and y3 A n are therefore equal to ly, 90” + v, 
90” + r@, and 180” - r,!~, respectively. Substituting these 
parameters in equation (8) yields 

P* A y, = cos-l 1 cos q*cos 1/, + sin ly*sinly ) 

B*Ay, =0 (10) 

T* Ay, = cos-1 1 sin v*sin ly + cos t#*cosq I. 

It is reasonable to assume that 1~ < 90” for each fault, i.e. 
the maximum shear stress direction does not lie opposite 
to the slip direction (p). Therefore, the absolute value 
signs in equation (10) can be removed, and substituting 
equation (10) in equation (2) gives 

n 

MCI=2 
c 

COSpl(COS $J*COS pi + sin ly*Sin?ji) 
i=l 

=2nQ!)*-2ipi* (11) 
i=l 

The expression for criterion MC2 is similar to equation 
(ll), i.e. MC2 = nt,!~* - Z&vi. 

Consequently, both MC1 and MC2 are minimized 
when v* = (lln)Z~i, that is, when ~JJ* is equal to the 
average value of the angle vi between the maximum 
principal stress direction y1 and each fault plane. From 
the relation q* = (l/2) tan-‘(l/&, the friction coef- 
ficient ,u~ decreases with increasing (lln)Z~i. Thus, for 
(l/n)~~i < 45”, ~0 > 0 is obtained; for (lln)Xqi 3 45”, 
,u~ e 0. The average friction coefficient determined by 
criteria MC1 and MC2 is closely related to the average 
value of the angle between the maximum principal stress 
axis and each fault plane. This conclusion, although 
derived in closed form for the special case where the 
intermediate axes of the local and the general stress 
tensor coincide, can be extended to the general case 
where B* A y # 0 by numerical simulation. 

The above analysis shows that Reches’ et al. method is 
applicable only to new faults in homogeneous and iso- 
tropic rocks, whose orientation with respect to the 
principal stress axes is determined by the friction coef- 
ficient alone. For the reactivation of preexisting faults, 
there is no simple relation between the fault plane 
orientation and the friction coefficient, because the 
reactivated faults are often not the most favourably 
oriented faults (see e.g. Ivins et al. 1990, Yin & Ranalli, 
1992). Therefore, the ‘friction coefficient’ obtained from 
criteria MC1 and MC2 reflects the average value of the 
angles between the maximum principal stress axis and 
the fault planes rather than the frictional strength of 
faults. 

A NEW INVERSION METHOD 

The Coulomb-Navier failure criterion is adequate to 
describe both the formation of new faults and the reacti- 
vation of pre-existing faults. Yin & Ranalli (1992) have 
derived an expression for the critical stress difference for 
arbitrarily oriented pre-existing faults as a function of 
material parameters, depth, principal stress directions, 
stress ratio and orientation of fault planes 

(01 - 01) = [( 

PoW(l - A> + so 
2 

rzly + d2& - (nfy + dn;y)2]1’2 

+ PoK4 + w - (4, + Gy)I (12) 

where ,u~ and So denote the friction coefficient and the 
cohesion, respectively, p the average density of over- 
lying rocks, g gravity, z depth, 13 the pore fluid factor, rely 
and n2,, the components of the unit normal (n) to the 
fault plane in the yi-coordinate system, 6 the stress ratio, 
and u1 and vl, given in equation (l), are the elements of 
the transformation matrix. On the basis of the critical 
stress difference, we propose here a new method to 
determine the average friction coefficient of preexisting 
faults from inversion of fault-slip data. Inversion tech- 
niques based on the critical stress difference have been 
proposed also by Angelier (1989) and Gephart (1992). 
However, introducing the normalized stress difference 
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(equation 13) into an inversion criterion is new. Our 
method also differs from Angelier’s (1989) and 
Gephart’s (1992) methods in the formulation of inver- 
sion criteria. 

Inversion criterion for the average friction coefficient 

As shown by equation (12), the critical stress differ- 
ence depends on depth and pore fluid pressure. How- 
ever, all faults can be brought to the same normalized 
stress tensor (al(,), 02(,,), osC,,) by dividing the magni- 
tudes of the principal stresses ol, a2 and a3 by the 
effective overburden pressure pgz(1 - A). If the stress 
field is uniform, all faults have the same normalized 
stress difference. From equation (12), and neglecting 
cohesion, the normalized critical stress difference is 
given by 

(al(,) - 03(n))= 
(01 - s> 

/%a - 2) 

PO 

(13) 

[The neglect of cohesion simplifies the argument and is 
justified by Byerlee’s (1978) experimental results show- 
ing So = 0 for effective normal stress less than 200 MPa, 
a condition that applies to most of the crust if the pore 
fluid pressure is hydrostatic or larger.] 

Given a set of faults, the principal stress directions and 
the stress ratio can be obtained from inversion based on 
the geometrical constraint, such as the method proposed 
by Yin & Ranalli (1993). Under the assumption of a 
uniform stress field, the average friction coefficient can 
also be determined by inversion. Suppose that PO is the 
average friction coefficient and that the dispersion of the 
friction coefficient from the average value is small for 
each fault. The average normalized critical stress differ- 
ence can be expressed as 

n 

(%(n) - 33(n)) = ; 
c 

@I(,) - S(,)X> (14) 
i=l 

where the subscript i denotes the ith fault, n the total 
number of faults, and (au,) - a3& is given by equation 
(13) with replacement of p. by the constant average 
friction coefficient PO for each fault. The misfit between 
normalized critical stress difference and average nor- 
malized critical stress difference is 

W,(n) - u3(n)) = b(n) - u3(n)) - @l(n) - ~3(n)h (1% 

If the stress field is uniform and each fault has the 
same frictional properties, the ideal solution for the 

%O 

%d 

Fig. 2. Simulated orientations of faults with respect to the normalized 
principal stress axes. (a) The ideal case where all faults have the same 
average normalized critical stress difference; (b) & (c) denote the cases 
where there is a dispersion in the average normalized critical stress 
difference, and the distribution of fault orientations indicates a large 
average friction coefficient for (b) and a small one for (c). The average 
friction coefficient and the average normalized critical stress difference 
are given by the slope of the straight lines and the largest Mohr circles. 

A stress ratio 6 = 0.3 is assumed. 

average friction coefficient should make the sum of the 
absolute values of misfits zero (see Fig. 2) 

c n I &l(n) - U3(n))i I = 0. (16) 

i=l 

Equation (16) is usually not satisfied, because different 
faults may have different friction coefficients. More- 
over, the misfit stress difference A(+(,) - Use,,) results 
also from other sources, such as measurement errors, 
uncertainties in the three principal directions and stress 
ratio 6, and local stress concentrations. In other words, 

A(oi(,) - u3(n)) is a random variable. From a probabil- 
istic point of view, an inversion criterion should be 
devised on the basis of its probability distribution. How- 
ever, it is difficult to evaluate this distribution because 
many of the above mentioned factors (especially the 
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variation of the coefficient of friction and disturbances of 
local stresses) are unknown. Therefore, we use the 
method of least squares, which is widely used as an 
empirical criterion (Blom 1989, pp. 201-202). 

Equation (13) shows that the normalized critical stress 
difference is an increasing function of the friction coef- 
ficient &a) and it goes to zero when p. is equal to zero. 
Consequently, the search for the average friction coef- 
ficient @Lo) cannot be based on minimization of the sum 
of squares of misfit stress differences. To overcome this 
difficulty, we introduce a parameter Aoi, the misfit ratio 
for the ith fault, 

(17) 

where misfit stress difference and average normalized 
stress difference are given by equations (15) and (14), 
respectively. An inversion criterion based on minimiz- 
ing the sum of squares of the misfit ratios can be 
expressed as 

MC3 = f A& (18) 
L 
i=l 

The inversion consists of a search for the best solution 
for the average friction coefficient ,iZo by minimizing 
criterion MC,. The basic physical assumption behind 
this inversion method is that the normalized critical 
stress difference at faulting is similar for each fault. 

Inversion procedure and confidence intervals 

Given a fault population generated by an unknown 
stress field, we can determine principal stress directions 
and stress ratio from the geometrical constraint, and 
average friction coefficient from the mechanical con- 
straint. Our inversion procedure is as follows: (1) Yin & 
Ranalli’s (1993) criterion C6 is used to determine the 
first four parameters, and the hypothesis that the data 
set represents a uniform stress field is tested according to 
a procedure proposed therein. (2) A wide range of 
values (0.01-1.5) for the average friction coefficient 
(invariant for each fault) is chosen. (3) In each step of 
the iteration, the selected average friction coefficient is 
changed and the value of MC3 is calculated according to 
equation (18); the increment of the selected average 
friction coefficient in each iterative step is 0.01. (4) The 
best estimate for the average friction coefficient is that 
value which minimizes MC,. 

Substituting the inverted average coefficient of fric- 
tion in equations (13) and (14) yields the average nor- 
malized critical stress difference (ai(,) - a3+,), from 
which the three average normalized principal stresses 
can be obtained. The principal stresses are related to the 
effective overburden pressure as (Yin & Ranalli 1992) 

p&l - 1) = 03 + <u: + dv& - cr3). (19) 

Using the relation a2 = a3 + 6(ai - 03), the three aver- 
age normalized principal stresses are 

G(n) = 
G 

PgzQ- A> 

= 1 - Gfl(n) - f73@))(UI + 64 - 1) 

4(n) = 
52 

L&l -A) 

53(n) = 
53 

P&7(1 - A) 

= 1 - (G(n) - 4@,)(uT + M). 

The precision of inversion of the average friction 
coefficient ,Zo is described by the confidence interval. 
Since the theoretical distribution of A(ai(,,) - 03& is 
unknown, it is difficult to determine accurately the 
confidence interval for the average friction coefficient. 
However, the least squares method implicitly assumes 
that the misfit ratio AIJ defined in equation (17) follows 
the normal distribution, and consequently the confi- 
dence interval for the average friction coefficient can be 
estimated based on this assumption. Since ha can be 
considered as an independent random variable for each 
fault, using the theorem that the sum of the squares of 
independent normal variables follows the 2 distribution 
(Blom 1989, p. 235), we obtain 

1 n - 
vA, C Ad - An - 11, (21) 

r=l 

where VA, is the variance of Aa. The estimated (or 
sample) variance of Au can be expressed as 

n 

$A, = (22) 

Comparing equation (22) with equation (18), it fol- 
lows that the sample variance $A, is the minimum of all 
possible values, each of which corresponds to a selected 
average friction coefficient. Therefore, choosing a confi- 
dence level 1 - a2, the confidence interval for the 
inverted average friction coefficient can be estimated by 
constructing a one-sided confidence interval for VA@. 
From equation (21), this is 

Once the one-side confidence intervals for the vari- 
ance VA0 are estimated, the confidence limits for the 
average friction coefficient p. are simply those two 
values that yield the confidence limits for VA,. Following 
the same procedure, the confidence intervals for the 
normalized three principal stresses (equation 20) can be 
estimated. 

The only parameter which cannot be determined by 
the combination of mechanical and geometrical con- 
straints is the pore fluid pressure. Equation (12) shows 
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Table 1. Results of stress inversion for sites AVB, TYM, KAM, and LOD with two different methods. The 
three principal stress axes are denoted by o r, uz and us, respectively. Stress ratio and estimated standard 
deviation for the measurement errors in both fault plane orientation and slip direction are denoted by B and 9 ln, 

The computing precision is 1” for q, oz and os, 0.01 for 6 and 0.1” for i@ 

Site 

AVB 

TYM 

KAM 

LOD 

Method 

Criterion C, 
Criterion MC1 

Criterion& 
Criterion MC, 

Criterion C, 
Criterion MC, 

Criterion C, 
Criterion MC, 

or 02 03 

Plunge Trend Plunge Trend Plunge Trend 6 $1” 

75 63 15” 244” 0” 154” 0.26 7.4” 
73 71” 17 238” 4” 330” 

83 202 6” 57” 4” 327” 0.13 12.1” 
83” 236 7” 53 0” 143 

82” 242” 3 131” 8 41” 0.32 20.4” 
78” 229” 6” 108 IO” 16 

90” 0” 99 0” 189 0.14 5.8 
82” 279” 8” 113 2” 23” 

that the role played by pore fluid pressure in faulting is 
opposite to that of depth, that is, increasing the pore 
fluid pressure is equivalent to decreasing the depth. 
Since depth does not affect fault orientations and slip 
directions (for a given stress field), the pore fluid press- 
ure is unlikely to be relevant to the geometry of faulting 
(fault orientation and slip direction), although it is 
certainly relevant to the mechanics of faulting. Conse- 
quently, the pore fluid pressure cannot be determined 
by a method based on inversion of fault-slip data. 

EXAMPLES 

The new inversion method is applied to four field 
examples. The first three data sets (Angelier 1990) were 
used by Yin & Ranalli (1993) to invert for the principal 
stress directions and the stress ratio. The first data set 
consists of 33 faults, from Neogene reef limestone near 
Agia Vavara, central Crete, Greece (site AVB). The 
second data set consists of 50 faults, from Neogene 
marly limestone near Tymbaki, southern Crete, Greece 
(site TYM). The third data set consists of 50 faults, from 
the Mineoka ophiolite of Kamogeawa, Boso Peninsula, 
Central Japan (site KAM). The fourth data set (Etche- 
copar et al. 1981) is composed of 38 faults, from the 
Permian basin of Lodbve, Herault, France (site LOD). 
These four areas are characterized by extensional tec- 
tonics with predominant normal dip-slip and oblique- 
slip faulting. Both the fault plane orientations and slip 

directions for sites KAM and LOD are more scattered 
than those for sites AVB and TYM [see Angelier (1990) 
and Etchecopar et al. (1981) for detailed descriptions]. 

In order to compare our results with the method 
proposed by Reches et al. (1992), the four data sets are 
also inverted by criterion MC1 (the selected range of the 
average friction coefficient is 0.0-1.5, and the increment 
in each iterative step is 0.01 for the friction coefficient 
and 1” for the principal stress directions). Table 1 lists 
the three principal stress directions inverted by criterion 
C, (Yin & Ranalli 1993) and criterion MCI, and the 
stress ratio 6 inverted by criterion C, (because the stress 
ratio cannot be determined by criterion MCI). 

Reches et al. (1992) argued that methods based on the 
geometrical constraint are less powerful than criterion 
MC1 because the misfit angle between the predicted 
maximum shear stress and slip direction may vanish for 
large numbers of general stress fields. For instance, 
when both u1 and q-axis lie in the plane defined by the 
slip and the fault normal, the misfit angle between 
predicted shear stress and measured slip direction 
vanishes for 0” < I+Q < 90”. This argument is certainly 
valid for conjugate faults. However, faulting in aniso- 
tropic rocks is characterized by reactivation of preexist- 
ing faults. The above argument is no longer valid in this 
case. When the distribution of fault plane orientations 
diverges notably from conjugate sets, the methods based 
on the geometrical constraint are more powerful than 
criterion MC1 in the determination of the principal stress 
directions. This point is well supported by the four 

Table 2. Inversion results for the average friction coefficient (Ee), average 
normalized critical stress difference (B t+,)-Zs(,~), average normalized principal 
stresses (at(,), i?zcn), 53~~)) for sites AVB, TYM, KAM, and LOD with two different 

methods 

Site Method 

AVB 

TYM 

KAM 

LOD 

Criterion MC1 0.68 
Criterion MC3 0.64 0.78 1.04 0.45 0.26 

Criterion MC1 0.63 
Criterion MC3 0.70 0.78 1.01 0.33 0.23 

Criterion MC1 0.0 
Criterion MC3 0.22 0.46 1.01 0.70 0.55 

Criterion MCI 0.96 
Criterion MC3 0.88 0.89 1.00 0.23 0.11 
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Fig. 3. Distribution of fault plane orientations (dots), inverted aver- 
age friction coefficient (slope of straight line), and normalized critical 

Fig. 4. Distribution of fault plane orientations (dots), inverted aver- 

stress difference (Mohr circles). (a) Site AVB; (b) site TYM. 
age friction coefficient (slope of straight line), and normalized critical 

stress difference (Mohr circles). (a) Site KAM; (b) site LOD. 

examples studied. Comparing the results obtained by 
criteria C6 and MCI, we find that, when the distribution 
of both fault plane orientations and slip directions is only 
slightly scattered, such as in the cases of sites AVB and 
TYM, the two methods (criteria C, and MCI) give rise to 
similar results. However, when the distribution of fault 
plane orientations and slip directions is more scattered, 
such as for site KAM and LOD, the difference between 
criteria C, and MCI becomes larger. 

The misfit angle between predicted shear stress and 
measured slip direction, its variance, and the normalized 
misfit angle for each fault are calculated. The normal- 
ized misfit angles are used to test the hypothesis that the 
stress field is uniform for each data set, according to the 
2 procedure described by Yin & Ranalli (1993). The 
significant level at which the null hypothesis is rejected is 
aI = 0.693 for site AVB, al = 0.702 for site TYM, 
a1 = 0.563 for site KAM, and al = 0.369 for site LOD. 
Therefore, the hypothesis that the stress field is uniform 
is accepted for all the four examples at a significance 
level much higher than the conventional al s 0.05. 
However, the estimated standard deviation of measure- 
ment error for site KAM is unexpectedly large 
($" = 20.4”). This may indicate a nonuniform stress 
field, because the 2 method tests only the shape of 
distribution of a random variable but not its variance 
(usually the estimated or sample variance is used in the 
2 testing). 

I I I I 
0.4 0.6 0.8 =1(n) 1.2% 

Table 2 lists the results of the inversion for the average 
friction coefficient of faults in the four areas according to 
criteria MCI and MC3. The average normalized critical 
stress difference and average normalized magnitudes of 
principal stresses are calculated according to equations 
(14) and (20). The results obtained by criterion MC, are 
also plotted in Figs. 3 and 4. As in the case of principal 
stress directions, criteria MC1 and MC, yield similar 
average friction coefficients for sites AVB and TYM, 
but noticeably different results for sites KAM and LOD, 
where the data are more dispersed. This suggests that the 
difference between criterion MC3 and criterion MCI 
increases with the increase of the dispersion in fault plane 
orientations and slip directions, i.e. the deviation from a 
conjugate fault set. In three of the four examples, the new 
method yields an average friction coefficient ranging 
from 0.64 to 0.88, i.e. within the range obtained in 
laboratory experiments (Byerlee 1978). For site 
KAM, a relatively small average friction coefficient 
,i& = 0.22 is obtained. However, as mentioned above, 
the estimated standard deviation of measurement errors 
for site KAM is unexpectedly large, which may indicate a 
nonuniform stress field. When a population of faults 
which actually come from different stress fields is fitted by 
a single stress field, their orientations with respect to the 
inverted principal stress are greatly biased and some of 
the faults may be highly inclined to the principal stress 
axes. This results in a smaller average friction coefficient. 
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Table 3. Estimates of 90% confidence intervals for the average friction coefficient @a), 
average normalized critical stress difference (Q+-i?s+,$, and average normalized principal 

stresses (cl(,), &o+ &(,,) obtained by criterion MC, (see Table 2) 

Site 

AVB 0.45-0.94 0.66-0.91 1.03-1.05 0.36xl.53 0.14-0.37 
TYM 0.5l&1.00 0.67-0.90 1.01-1.01 0.23-0.42 0.11-0.34 
KAM 0.10-0.41 0.24-0.72 1.01-1.02 0.53-0.84 0.30-0.77 
LOD 0.60-1.38 0.79-1.01 1.00-1.00 0.13-0.32 -0.01-0.21 

The 90% confidence intervals for the average friction basis of the geometrical constraint. Introduction of 
coefficient, average normalized critical stress difference, probability theory into the inversion for the average 
and average normalized magnitudes of the principal friction coefficient is necessary to make use of the 
stresses inverted by criterion MC, are calculated, and mechanical constraint in hypothesis testing. The other 
the results are listed in Table 3. Comparing Table 3 with assumption (cohensionless faults) is also routinely 
Yin & Ranalli’s (1993) Table 2, we find that the confi- made, although further study is required to assess its 
dence interval for the average friction coefficient is much effects. The main advantage of the present method over 
larger than that for the principal stress directions. This the previous one proposed by Reches et al. (1992) is that 
suggests that the geometry of faulting, i.e. fault plane it can be applied to the reactivation of pre-existing faults 
orientations and slip directions, imposes stronger con- in rocks with strength anisotropies. The estimated fric- 
straints on the orientation of the stress field than on the tion coefficients in the crust are well within the labora- 
magnitude of stresses and frictional strength. tory range. 

CONCLUSIONS 

In this paper, we have first examined the inversion 
method proposed by Reches et al. (1992) for the deter- 
mination of the average friction coefficient of faults. The 
applicability of this method has been shown to be re- 
stricted to conjugate faults developed in homogeneous 
and isotropic rocks, where fault plane orientations with 
respect to the maximum principal stress axis are directly 
related to the friction coefficient of rocks. Its applica- 
bility is problematic in the case of reactivation of pre- 
existing faults in anisotropic rocks. 
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